翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Merton School : ウィキペディア英語版
Oxford Calculators
The Oxford Calculators were a group of 14th-century thinkers, almost all associated with Merton College, Oxford; for this reason they were dubbed "The Merton School". These men took a strikingly logico-mathematical approach to philosophical problems.
The key "calculators", writing in the second quarter of the 14th century, were Thomas Bradwardine, William Heytesbury, Richard Swineshead and John Dumbleton.
These men built on the slightly earlier work of Walter Burley and Gerard of Brussels.
==Science==
The advances these men made were initially purely mathematical but later became relevant to mechanics. They used Aristotelian logic and physics. They also studied and attempted to quantify every physical and observable characteristic, like heat, force, color, density, and light. Aristotle believed that only length and motion were able to be quantified. But they used his philosophy and proved it untrue by being able to calculate things such as temperature and power.〔Agutter, Paul S.; Wheatley, Denys N. (2008) "Thinking About Life"〕
They developed Al-Battani's work on trigonometry and their most famous work was the development of the mean speed theorem, (though it was later credited to Galileo) which is known as "The Law of Falling Bodies".〔Gavroglu, Kostas; Renn, Jurgen (2007) "Positioning the History of Science"〕 Although they attempted to quantify these observable characteristics, their interests laid more in the philosophical and logical aspects than in natural world. They used numbers to philosophically disagree and prove the reasoning of "why" something worked the way it did and not only "how" something functioned the way that it did.
The Oxford Calculators distinguished kinematics from dynamics, emphasizing kinematics, and investigating instantaneous velocity. They first formulated the mean speed theorem: ''a body moving with constant velocity travels the same distance as an accelerated body in the same time if its velocity is half the final speed of the accelerated body''.
The mathematical physicist and historian of science Clifford Truesdell, wrote:〔Clifford Truesdell, ''Essays in The History of Mechanics'', (Springer-Verlag, New York, 1968)〕
In ''Tractatus de proportionibus'' (1328), Bradwardine extended the theory of proportions of Eudoxus to anticipate the concept of exponential growth, later developed by the Bernoulli and Euler, with compound interest as a special case. Arguments for the mean speed theorem (above) require the modern concept of limit, so Bradwardine had to use arguments of his day. Mathematician and mathematical historian Carl Benjamin Boyer writes, "Bradwardine developed the Boethian theory of double or triple or, more generally, what we would call 'n-tuple' proportion".
Boyer also writes that "the works of Bradwardine had contained some fundamentals of trigonometry". Yet "Bradwardine and his Oxford colleagues did not quite make the breakthrough to modern science." The most essential missing tool was algebra.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Oxford Calculators」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.